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Abstract

In this paper, the behavior of two symmetric interface cracks between two dissimilar magneto-electro-
elastic composite half planes under anti-plane shear stress loading is investigated by Schmidt method for
the permeable crack surface conditions. By using the Fourier transform, the problem can be solved with a
set of triple integral equations in which the unknown variable is the jump of the displacements across the
crack surfaces. In solving the triple integral equations, the jump of the displacements across the crack
surface is expanded in a series of Jacobi polynomials. Numerical solutions of the stress intensity factor are
given. The relations among the electric filed, the magnetic flux and the stress field can be obtained.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite material consisting of a piezoelectric phase and a piezomagnetic phase has drawn
significant interest in recent years, due to the rapid development in adaptive material systems. It
shows a remarkably large magnetoeletric coefficient, the coupling coefficient between static
electric and magnetic fields, which does not exist in either constituent. The magnetoelectric
coupling is a new product property of the composite, since it is absent in each constituent. In some
cases, the coupling effect of piezoelectric/piezomagnetic composites can be even obtained a
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hundred times larger than that in a single-phase magnetoelectric material. Consequently, they are
extensively used as magnetic field probes, electric packaging, acoustic, hydrophones, medical
ultrasonic imaging, sensors, and actuators with the responsibility of magneto-electro-mechanical
energy conversion [1]. When subjected to mechanical, magnetic and electrical loads in service,
these magneto-electro-elastic composites can fail prematurely due to some defects, e.g. cracks,
holes, etc. arising during their manufacturing processes. Therefore, it is of great importance to
study the magneto-electro-elastic interaction and fracture behaviors of magneto-electro-elastic
composites [2,3].

The development of piezoelectric—piezomagnetic composites has its roots in the early work of
Van Suchtelen [4] who proposed that the combination of piezoelectric—piezomagnetic phases may
exhibit a new material property—the magnetoelectric coupling effect. Since then, the magneto-
electric coupling effect of BaTiO3;—CoFe,04 composites has been measured by many researchers.
Much of the theoretical work for the investigation of magnetoelectric coupling effect has only
recently been studied [1-3,5-10]. The behaviors of two collinear cracks in piezoelectric materials
were studied in [11-13]. To our knowledge, the magneto-electro-elastic behavior of magneto-
electro-elastic composites with two collinear symmetric interface cracks subjected to anti-plane
shear stress loading has not been studied.

In this paper, the behavior of two collinear interface cracks between to dissimilar magneto-
electro-clastic half planes composites subjected to anti-plane shear is investigated by use of a
somewhat different method, named as the Schmidt method [14,15]. The Fourier transform is
applied and a mixed boundary value problem is reduced to a triple integral equations. To solve
the triple integral equations, the jump of the displacements across the crack surfaces is expanded
in a series of Jacobi polynomials. This process is quite different from those adopted in the ref-
erences [2,3] as mentioned above. The form of solution is easy to understand. Numerical solutions
are obtained for the stress.

2. Formulation of the problem

It is assumed that there are two collinear interface cracks of length 1 — 5 between two dissimilar
magneto-electro-elastic composite half planes as shown in Fig. 1. 26 is the distance between two
cracks. The piezoelectric/piezomagnetic boundary-value problem for anti-plane shear is consi-
derably simplified if we consider only the out-of-plane displacement, the in-plane electric and the
in-plane magnetic fields. As discussed in [16], since the opening displacement is zero for the
present anti-plane shear problem; the crack surfaces can be assumed to be in perfect contact.
Accordingly, both the electric and magnetic potentials are assumed to be continuous across the
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Fig. 1. Two interface cracks between two dissimilar magneto-electro-elastic composite half planes.
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crack surfaces. So the boundary conditions of the present problem are (we just consider the
perturbation field.):

{‘c)(,?(x,O*) :r)(,?)(x,O*) =-1, b<|x|<1 ()
wl (x,07) = w?(x,07), x| < b, x| >1

¢V (x,01) = @ (x,07), DV(x,0") =D (x,07), |x|<oo (2)
Y, 07) =yP(x,07), B(x,07) =B (x,07), [x<oo (3)
w(x,y) = w?(x,y) =0 for (¥ +y")"? — oo (4)

where rgg, D,(f) and B,(f) (k=x,y,i=1,2) are the anti-plane shear stress, in-plane electric dis-
placement and in-plane magnetic flux, respectively. w®, ¢V and ' are the mechanical dis-
placement, the electric potential and the magnetic potential, respectively. Note that all quantities
with superscript i (i = 1,2) refer to the upper half plane 1 and the lower half plane 2 as in Fig. 1,
respectively. In this paper, we only consider that 7, is positive.

It is assumed that the magneto-electro-elastic composite is transversely isotropic. So the

constitutive equations can be written as

o) = claw! +ellol + Wi, (k=xy, i=12) (5)
Dl(cl) = e(IZS)W,(IIc) - 8(lll)¢<llc) - dl(ll>lp,(llc)7 (k =X, i= 172) (6)
B =g\ — ¢y — i, (k=xy, i=1,2) (7)

where cfg is shear modulus, e§2 is piezoelectric coefficient, sgil) is dielectric parameter, q%) 1s
piezomagnetic coefficient, d1(l1) is electromagnetic coefficient, ,ui’l) is magnetic permeability.

The anti-plane governing equations are

AP 4 V20 + gD =0, (i=1,2) (8)
e d VW — &)V —af) vy =0, (i=1,2) 9)
g Iv2w — df) 20 — IV =0, (i=1,2) (10)

where V? = 9%/0x? 4+ 0?/0)”? is the two-dimensional Laplace operator. Because of the assumed
symmetry in geometry and loading, it is sufficient to consider only the problem for 0 <x < oo,
—00 <y < oo. A Fourier transform is applied to Egs. (8)—(10). Assumed that the solutions are
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(Wil (x,y) =2 [ Ai(s)e™™ cos(sx)ds
(1) (1) (1) (1) o0
e —d q 2 —s
#00p) =" IS0 ) 1 [ B cos(onds, (72 0)
ey —dy TJo (11)
(1) (1) (1) (1) 00
q15€, —d,e 2 s
§00,3) = DA ) 42 [ i) cos(on)ds
ey —dy T Jo
w@ (x,y) =2 [7 As(s)e” cos(sx)ds
2,2 (2 (2) o0
tiveis —dii'gis @) 2 s
¢ (x,) = w?(x,p) += [ Ba(s)e” cos(sx)ds, (v<0)
T A “h 12
2,2 (2),(2) )
qi5€, —d\e 2 s
lp(z)(x,y) = 1?2>“(2> 11(2);5 w<2)(x,y) +—/ Cy(s)e” cos(sx)ds
ey —dy T Jo
where A4,(s), Bi(s), Ci(s), 42(s), B2(s) and C,(s) are unknown functions.
So from Egs. (5)—(7), we have
| 2 (= w  aely | aqly (M (1)
f;)(x,y) =—— / s||ca + +—= |4i(s) + e;3Bi(s) + g;5 Ci(s) | e cos(sx)ds
T Jo ap dap
(13)
pW _ 2 (% (1) —sy d 14
yey) = | slerBi(s) +diy Ci(s)]e™ cos(sx)ds (14)
0
Dy =2 [ g (1) ﬂy
B (x,y)=— | sldiyBi(s) + iy Ci(s)]e™ cos(sx)ds (15)
0
@) 2 [~ 0, ey | 2413 @) ® ,
T (x,y) = E/ s|| ey + e —i—g— As(s) + ejs Ba(s) + g5 Ca(s) [e¥ cos(sx)ds  (16)
0 0 0
2 oo
DO(x,y) = -2 / s[22Bs(s) + d2Ca(s)]e” cos(sx)ds (17)
) 7 Jo
2 oo
By) = =2 [ s ] Cals)e” cos(snds (18)
1 1 1)2 1 1 1 1 1 1 1 1 2 2 2)2
where ayp = 5(11>'“(11> - d1(1) >, a1 = :u<11)e§5) - d1(1)‘1§5)a a = 955)8(11) - d1<1)e<15), 8o = 5(11>N(11) - d1(1> 5

2 ,2)
1

2 2) (2
0= B dfe

2) (2) _ 2
ejs —di\'qis, & = qis €y
To solve the problem, the jumps of the displacements, the electric and the magnetic potentials
across the crack surfaces are defined as follows:

Fx) =w(x,07) = w?(x,07) (19)
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fo(x) = " (x,0%) — ¢ (x,07) (20)
Sux) =90 (x,0%) =y (x,07) (21)

Substituting Eqgs. (11) and (12) into Egs. (19)—(21), and applying the Fourier transform and the
boundary conditions, it can be obtained

F(s) = Ai(s) = As(s) 1)
Z—;Ams) - g—;Az(S) +Bi(s) — Ba(s) =0 (22)
() = 2 Aals) + Ci(s) ~ Cals) = 0 (23)

Substituting Egs. (13)-(18) into Egs. (1)—(3), it can be obtained

(1 (1) (2) (2)
ae a e
<04(111>+ 1€15 + 2415 )Al(s)+e<115)31(s)+q515)C1(S)+ <c‘(‘i)+gl 15 Jrgz‘hs )Az(s)
ao ap 80 80
+ eizs)Bz(s) + q(125>C2(s) =0 (24)
e11B1(5) + di) C1(s) + & Bals) + di} Cals) = 0 (25)
d\\'Bi(s) + 1Y Ci(s) + diY Ba(s) + pi7 Ca(s) = 0 (26)

By solving six Egs. (21)—(26) with six unknown functions A4;(s), Bi(s), Ci(s), 42(s), Ba(s), Ca(s)
and applying the boundary condition (1), it can be obtained:

2b /Oosf(s) cos(sx)ds =19, b<|x|<1 (27)

T Jo
/ " 7(s)cos(sx)ds = 0, |x| < b, x| > 1 (28)
0

where f3, is a constant which depends on the properties of the materials (see Appendix A). When
the properties of the upper and the lower half planes is the same, f; = cfé‘) /2. To determine the
unknown functions f(s), the triple integral equations (27) and (28) must be solved.

3. Solution of the triple Integral equations

From the natural property of the displacement along the crack line, it can be obtained that the
jump of the displacements across the crack surface is a finite, continuous and differentiable
function. Hence, the jump of the displacements across the crack surfaces can be represented by the
following series:
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o0

[ Lib 12\ 2
flx) = anpn(m) (x 1?) (1 _ %) , forb<x<1 (29)
n=0 >

where b, is unknown coefficients to be determined and P{'/>1/2)(x) is a Jacobi polynomial [17].
The Fourier transform of Eq. (29) are [18§]

76 = B G(s) <s1 = ) (30)

n 1
r(n+1+1) (—1)7005<S +b>, n=20,2,4,6,...
F=2a——r— Gis) = [ 1+b (31)
n! (—1)%sin (s )7 n=1,3,5"7,...

where I'(x) and J,(x) are the Gamma and Bessel functions, respectively.

Substituting Eq. (30) into Egs. (27) and (28), Eq. (28) has been automatically satisfied. After
integration with respect to x in [b,x](b <x < 1), Eq. (27) reduces to

g b,F, /0 ) 57 Ga(8) Tt (s ! ; b> [sin(sx) — sin(sb)]ds = ;_;(1’ (x — b) (32)

From the relationships [17]

sin[nsin~' (b/a)]

. ; , a>b
/0 §Jn(sa) mn(bs)ds = a" sin(nn/Z) 1<b (33)
nlb + \/mr 7
cos[nsin” ' (b/a)] a>b
[ele] 1 n ’
J— = 4
/0 SJ"(Sa) cos(bs)ds a" cos(nm/2) Wb (34)

nlb + Vb — "’

The semi-infinite integral in Eq. (32) can be modified as

> 1-b 1+b
/ %J,,H <s 7 ) cos <s ;— ) sin(sx)ds
0

1-p\" 1 o (D7
=6 sin
1 (%) ( 2 ) ___sin [(n 1)sin~! (1—1—1b b2x>}

(35)
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/OOC %[1 ) (sl ;b> sin <sl ;b> sin(sx)ds

_ COS“n+Ush11(l*b2x>]{ (152)"" cos ()

2(n+1) 1-b

(36)

Thus the semi-infinite integral in Eq. (32) can be evaluated directly. Eq. (32) can now be solved for
the coefficients b, by the Schmidt method [14,15]. For brevity, the Eq. (32) can be rewritten as
following

ib,,E,,(x) =U(x), b<x<l1 (37)

where E,(x) and U(x) are known functions and coefficients b, are unknown and will be deter-
mined. A set of functions P,(x) which satisfy the orthogonality conditions

/le(x)P,,(x)dx = N,Opm, N,= /1 P2(x)dx (38)

can be constructed from the function, E,(x), such that

B =Y S EW )

where M;; is the cofactor of the element d;; of D,, which is defined as

d007 d017d027 s 7d0n
le; d117d127 s 7dln
d20a d217d227 v 7d2n

_dn07 dnlydn2a cee 7dnn

Using Eqgs. (37)—(40), we obtain

00 M,
b, = Zq]]%j

j=n

with g; :% /1 U(x)P;(x)dx (42)
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4. Intensity factors

The coefficients b, are known, so that the entire perturbation stress field, the perturbation
electric displacement and the magnetic flux can be obtained However, in fracture mechanics, it is
of importance to determine the perturbation stress r ), the perturbation electric dlsplacement D;”

and the magnetlc flux By in the vicinity of the crack tips. In the case of the present study, , Dy)
and B along the crack line can be expressed respectively as
7.' W __ 2y Zb F, / 0 (8) 1 <sl ;b> cos(xs)ds (43)
D (x,0) = _2% f;bF /0 T G5V (s ! - b > cos(xs)ds (44)
B(l) _ s Zb F, / ()11 <s1 ;b> cos(xs)ds (45)

where f3, and f5; are two constants which depend on the properties of the materials (see Appendlx
A). When the properties of the upper and the lower half planes is the same, f3, = e15 / 2,

Bs = q 15 / 2.
Observing the expression in Egs. (43)—(45), the singular portions of the stress field, the electric

displacement and the magnetic flux can be obtained respectively from the relationships [17]

s (s ot = oo [s( 152 o o (152}
in (157 eoson =g {sm (157 2)] < on [ (57 4)]

cos[nsin~' (b/a)]

h ) a>b
/ Ju(sa) cos(bs)ds = \/@
0 B a"sin(nm/2) b
VB = @b+ Vb — )"
.
. sin[n s1£1 (bz/a)] | .
/ J,(sa) sin(bs)ds = W
0 _ a" cos(nm/2) .
VIE — @b+ Vb — "’

The singular parts of the stress field, the electric displacement and the magnetic flux can be
expressed respectively as follows (x > 1 or x < b):
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BT
= ,,EZO b,F,H,(b,x) (46)
Br
D=—-——= F.H, 4
- ,,E:o b,F,H,(b,x) (47)
B¢
B = - ,,E:o b,F,H,(b,x) (48)
where

Hbx) = { CDTR(Bxn), 0 <x<bh
n7 —R(b,x,n), x> 1

2(1 - b)n+l

R(b,x,n) =

n+1

\/\1+b—2x\2—(1—b)2[|1+b—2x|+\/\1+b—2x]2—(1—b)2

At the left tip of the right crack, we obtain the stress intensity factor K as

x—b~

Ky = lim \/2n(b—x) -t = f mi(—l)"bnﬂ (49)

At the right tip of the right crack, we obtain the stress intensity factor Kr

Kg = lim \/2n(x — 1) -t = manFn (50)
n=0

x—1t

At the left tip of the right crack, we obtain the electric displacement intensity factor KD as

KE:;}EEV b—x)-D=p, Z b,F, g?KL (51)

At the right tip of the right crack, we obtain the electric displacement intensity factor K2 as

Kg—llm\/2nx—1 D= ﬁm/ ZbF— (52)
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At the left tip of the right crack, we obtain the magnetic intensity factor KP as

Kp = lim \/2n(b —x) - B = f; Z ?KL
= 1

At the right tip of the right crack, we obtain the magnetic intensity factor K as

KB = lim \/2n(x — 1) - D = , Zb :B3KR

x—1+

5. Conclusions

(53)

In the present paper,it is assumed that two collinear interface cracks only subject to an anti-
plane shear stress loading, do not subject to an electric field or a magnetic flux loading. Cer-
tainly, the loading and the geometry of cracks are symmetry. In this case, the results of this
paper are shown in Fig. 2. From Egs. (32), (49) and (50), it can be obtained that the stress field
does not depend on the material properties except the crack length. So in all computation, the
material constants are not considered. From the results, the following observations are very

significant:

(1) The properties of the stress intensity factor of the present paper are the same as ones in a gen-
eral elastic material. The stress intensity factor does not depend on the properties of the mate-
rial for the anti-plane shear fracture problem. This can be obtained in Egs. (32), (49) and (50).
However, the electric displacement and the magnetic flux intensity factors depend on the

properties of the materials as shown in Egs. (51)—(54).

(i1) The stress intensity factors decrease with increase in the distance between two cracks. It can be
also obtained that the interaction of two interface cracks decrease with increase in the distance
between two cracks. The results of the electric displacement and the magnetic flux intensity
factors can be obtained through the Egs. (51)—(54). In the present paper, they are omitted.
Hence, the electric displacement and the magnetic flux intensity factors have the same chang-

ing rule as the stress intensity factor.

3.01
2.51

K, /1,
2.0

\

031 kit
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04— . . . .
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b

Fig. 2. The stress intensity factor versus b.



Z.-G. Zhou et al. | International Journal of Engineering Science 42 (2004) 1155-1167 1165

Acknowledgements

The authors are grateful for the financial support by the Natural Science Foundation
of Hei Long Jiang Province (A0301), the National Natural Science Foundation of China
(50232030,10172030), the SRF for ROCS, SEM and the Multidisciline Scientific Research
Foundation of Harbin Institute of Technology (HIT. MD2001. 39).

Appendix A
H, = 2l + ol alf + Bl — 2elellailad + A gl — 2elelba?
= 1l o)+ () )
Hs = ) el ~ 22l — e~ 2 (o + ) + g )]

_ Wl e, 0,0, @ O, @00 0@, @f @ (1)
Hy = cy {615 My Fege ) teps fy Fegg ey 1y e [‘115 + Cyy (#11 +H11)]}

2

b* +2811‘115%5 +“311%5 _2‘315‘]15“’11 2elsqlsd11

Ry _d11 C44 +811Q15

_ (1) _(2) 4(2) (2) (2) 4(2) @) 50)?
Ry = —2ej5qy5d)y —2ej5q5d); — cydy)

Ry = =24} [l () + g0) + e () +a7) + e}

R D+ 2002+ o D+ e ]+ 200+ D+ D
o= e+ )+ 20+ )+ e + B

Ra= e+ 20+ = (8042 (0 2)]

By = (H\ +Hy + Hy + Hy) /(Ry + Ry + R3 + Ry + Rs + Rs)

_ @) (1) (1)? (2) (1) (1) (2) 1) _(2) (1) 4(2) (2) (1) (1) 4(2) 1) (2) 4(2)
S1=—e5e1qs —ese 91595 tesesqisd)) — il qisd) +eps qisdy

_ ) _(2) (2) 4(2) ) (2 ;27 1 (1) _(2) (2 m _(2)* ()
Sy =2ej5e5qi5d), +ejscyd) —esqi5qise — €jsdys £

2)? 2) (2
§; = d ){e(ls [615 (2‘115 +q(15)> —i—cfm)d“} +q(15) <e(15 +Cé(t4 811>)}

_ W@, M e @ 1) 0.0, O @, 0 1, @ 0 1) 2,2 0
Sq4= —ejs es )] —ejsels ] —ejsCu el ] — €5 €5l —ejsels [ — €j5Cyy &1 Uiy

1 2 2
Ss = 04(14){‘1( * 15 +dll ( d1<1) - ‘hs 8%3) + 511 [‘115 d1(1> - 3(15) (l‘u) + ,“51 )}}



1166 Z.-G. Zhou et al. | International Journal of Engineering Science 42 (2004) 1155-1167

Br=—S1+S+S3+8:+Ss5)/(Ri +R,+R; +Rs + Rs + Ry)
_ L () (1) (2 @) (1) 4(2) 1) (1) (2) 4(2) (2) (1) (2) 4(2) @) (1) 4(1)
Y1 =¢7q15s 415 T &1915915 — €545 di] — €154qi59,5d)] — 2ej545q,5d)] — Caiqisdy

( (

2.2 ) (2?2 1 2 (1), .(2) @7 (1) (2 2).(1) (1) (2) 2 1),.2),,2)
Y =gqis qi5¢] T 915915 &1 teisesqisiy tejs sty + €195 1| T Caqqis €11 iy

1 D (1) () 2) (1) (2 1) 7 2) (1) 4(2 2) (1) ()
;= _dl(l) <2e(15)‘](15)q(15 + 6(15)‘115 ‘](15) + els)q<15) + 04(14)‘](15)‘11(1) +Cc<t4 €1s Mn)

1?2 (2) (1) 1 @) ). 1) 1) _(2) ,02) (1
Yy = e<15 ‘1<15 .“<11 +315>e(15)Q15>#11 —|—e(15)ci4 d1<1 H(u)

1 @ S50 @, ;0. @, (1) @ 1) D, 0, 2.2 4
Ys = 0514)( - d1<1) qgs) - dfl)d1(1)‘]§5) + dl(l)e(ls)ﬂ(ll) + 8(11)‘155):“(11) - 3(15)d1<1)ﬂ§1) + q(ls)g(ll):u(ll))

Bi=M+ L+ Y+ Y+Y5)/(R + R+ Ry + Ry + Rs + Re)
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